Skip to content

Cocurrency

One of the strengths of Go is the simplicity of its cocurrency paradigm. A goroutine is essentially a thread that gets managed by the runtime.

go
package main

import (
	"fmt"
	"time"
)

func say(s string) {
	for i := 0; i < 5; i++ {
		time.Sleep(100 * time.Millisecond)
		fmt.Println(s)
	}
}

func main() {
	go say("world")
	say("hello")
}

Channels

Channels are typed pipelines that you can send and receive values between goroutines. Sending and receiving through a channel block the thread until the otherside is ready.

go
ch := make(chan int)
ch <- v    // Send v to channel ch.
v := <-ch  // Receive from ch, and assign value to v.
go
package main

import "fmt"

func sum(s []int, c chan int) {
	sum := 0
	for _, v := range s {
		sum += v
	}
	c <- sum // send sum to c
}

func main() {
	s := []int{7, 2, 8, -9, 4, 0}

	c := make(chan int)
	go sum(s[:len(s)/2], c)
	go sum(s[len(s)/2:], c)
	x, y := <-c, <-c // receive from c

	fmt.Println(x, y, x+y)
}

Buffering

Channels can also be buffered to allow senders to continue sending messages to a channel as long as the buffer is not full. Receivers block when the buffer is empty.

go
ch := make(chan int, 100)

Closing

Channels can be closed to denote when no more values are going to be sent through the channel. Receivers can test for a closed channel by receiving a second parameter from the channel. ok will be false if the channel is closed. The sender should always close the channel, as sending on a closed channel will cause a panic.

go
v, ok := <-ch

close(ch)

This can also be used with range to automatically receive the values from the channel and break the loop after the channel closes.

go
package main

import (
	"fmt"
)

func fibonacci(n int, c chan int) {
	x, y := 0, 1
	for i := 0; i < n; i++ {
		c <- x
		x, y = y, x+y
	}
	close(c)
}

func main() {
	c := make(chan int, 10)
	go fibonacci(cap(c), c)
	for i := range c {
		fmt.Println(i)
	}
}

Select

Select is like a switch statement for channels. It blocks until a condition occurs and then runs that condition. If multiple are ready at the same time it will choose randomly. You can add a default case to do something without blocking.

go
package main

import "fmt"

func fibonacci(c, quit chan int) {
	x, y := 0, 1
	for {
		select {
		case c <- x:
			x, y = y, x+y
		case <-quit:
			fmt.Println("quit")
			return
		}
	}
}

func bomb() {
	tick := time.Tick(100 * time.Millisecond)
	boom := time.After(500 * time.Millisecond)
	for {
		select {
		case <-tick:
			fmt.Println("tick.")
		case <-boom:
			fmt.Println("BOOM!")
			return
		default:
			fmt.Println("    .")
			time.Sleep(50 * time.Millisecond)
		}
	}
}

func main() {
	c := make(chan int)
	quit := make(chan int)
	go func() {
		for i := 0; i < 10; i++ {
			fmt.Println(<-c)
		}
		quit <- 0
	}()
	fibonacci(c, quit)
    bomb()
}

Mutex

Mutexes can be used to pass variables to multiple goroutines and making sure only one can operate on it at a time.

go
package main

import (
	"fmt"
	"sync"
	"time"
)

// SafeCounter is safe to use concurrently.
type SafeCounter struct {
	mu sync.Mutex
	v  map[string]int
}

// Inc increments the counter for the given key.
func (c *SafeCounter) Inc(key string) {
	c.mu.Lock()
	// Lock so only one goroutine at a time can access the map c.v.
	c.v[key]++
	c.mu.Unlock()
}

// Value returns the current value of the counter for the given key.
func (c *SafeCounter) Value(key string) int {
	c.mu.Lock()
	// Lock so only one goroutine at a time can access the map c.v.
	defer c.mu.Unlock()
	return c.v[key]
}

func main() {
	c := SafeCounter{v: make(map[string]int)}
	for i := 0; i < 1000; i++ {
		go c.Inc("somekey")
	}

	time.Sleep(time.Second)
	fmt.Println(c.Value("somekey"))
}