Cocurrency
One of the strengths of Go is the simplicity of its cocurrency paradigm. A goroutine
is essentially a thread that gets managed by the runtime.
package main
import (
"fmt"
"time"
)
func say(s string) {
for i := 0; i < 5; i++ {
time.Sleep(100 * time.Millisecond)
fmt.Println(s)
}
}
func main() {
go say("world")
say("hello")
}
Channels
Channels are typed pipelines that you can send and receive values between goroutines. Sending and receiving through a channel block the thread until the otherside is ready.
ch := make(chan int)
ch <- v // Send v to channel ch.
v := <-ch // Receive from ch, and assign value to v.
package main
import "fmt"
func sum(s []int, c chan int) {
sum := 0
for _, v := range s {
sum += v
}
c <- sum // send sum to c
}
func main() {
s := []int{7, 2, 8, -9, 4, 0}
c := make(chan int)
go sum(s[:len(s)/2], c)
go sum(s[len(s)/2:], c)
x, y := <-c, <-c // receive from c
fmt.Println(x, y, x+y)
}
Buffering
Channels can also be buffered to allow senders to continue sending messages to a channel as long as the buffer is not full. Receivers block when the buffer is empty.
ch := make(chan int, 100)
Closing
Channels can be closed to denote when no more values are going to be sent through the channel. Receivers can test for a closed channel by receiving a second parameter from the channel. ok
will be false if the channel is closed. The sender should always close the channel, as sending on a closed channel will cause a panic.
v, ok := <-ch
close(ch)
This can also be used with range
to automatically receive the values from the channel and break the loop after the channel closes.
package main
import (
"fmt"
)
func fibonacci(n int, c chan int) {
x, y := 0, 1
for i := 0; i < n; i++ {
c <- x
x, y = y, x+y
}
close(c)
}
func main() {
c := make(chan int, 10)
go fibonacci(cap(c), c)
for i := range c {
fmt.Println(i)
}
}
Select
Select is like a switch statement for channels. It blocks until a condition occurs and then runs that condition. If multiple are ready at the same time it will choose randomly. You can add a default case to do something without blocking.
package main
import "fmt"
func fibonacci(c, quit chan int) {
x, y := 0, 1
for {
select {
case c <- x:
x, y = y, x+y
case <-quit:
fmt.Println("quit")
return
}
}
}
func bomb() {
tick := time.Tick(100 * time.Millisecond)
boom := time.After(500 * time.Millisecond)
for {
select {
case <-tick:
fmt.Println("tick.")
case <-boom:
fmt.Println("BOOM!")
return
default:
fmt.Println(" .")
time.Sleep(50 * time.Millisecond)
}
}
}
func main() {
c := make(chan int)
quit := make(chan int)
go func() {
for i := 0; i < 10; i++ {
fmt.Println(<-c)
}
quit <- 0
}()
fibonacci(c, quit)
bomb()
}
Mutex
Mutexes can be used to pass variables to multiple goroutines and making sure only one can operate on it at a time.
package main
import (
"fmt"
"sync"
"time"
)
// SafeCounter is safe to use concurrently.
type SafeCounter struct {
mu sync.Mutex
v map[string]int
}
// Inc increments the counter for the given key.
func (c *SafeCounter) Inc(key string) {
c.mu.Lock()
// Lock so only one goroutine at a time can access the map c.v.
c.v[key]++
c.mu.Unlock()
}
// Value returns the current value of the counter for the given key.
func (c *SafeCounter) Value(key string) int {
c.mu.Lock()
// Lock so only one goroutine at a time can access the map c.v.
defer c.mu.Unlock()
return c.v[key]
}
func main() {
c := SafeCounter{v: make(map[string]int)}
for i := 0; i < 1000; i++ {
go c.Inc("somekey")
}
time.Sleep(time.Second)
fmt.Println(c.Value("somekey"))
}